Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height

نویسندگان

  • Yan Yang
  • Sassan Saatchi
  • Liang Xu
  • Yifan Yu
  • Michael A. Lefsky
  • Lee White
  • Yuri Knyazikhin
  • Ranga B. Myneni
چکیده

Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS) satellite observations (2004–2008). We used top canopy height (TCH) of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and influencing patterns of aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention

1 Nitrification is an important microbial process in humid tropical ecosystems because of its effects on potentials for nitrogen loss via nitrate leaching and denitrification and on the hydrogen ion cycle. Nitrification rates in humid tropical soils vary markedly among different forest types but in general appear to increase following disturbance. Proximal controls on nitrifiers include ammoniu...

متن کامل

Predictions of Tropical Forest Biomass and Biomass Growth Based on Stand Height or Canopy Area Are Improved by Landsat-Scale Phenology across Puerto Rico and the U.S. Virgin Islands

Remotely-sensed estimates of forest biomass are usually based on various measurements of canopy height, area, volume or texture, as derived from LiDAR, radar or fine spatial resolution imagery. These measurements are then calibrated to estimates of stand biomass that are primarily based on tree stem diameters. Although humid tropical forest seasonality can have low amplitudes compared with temp...

متن کامل

Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants

Epiphytic vascular plants are common species in humid tropical forests. Epiphytes are influenced by abiotic and biotic variables, but little is known about the relative importance of direct and indirect effects on epiphyte distribution. We surveyed 70 transects (10 m × 50 m) along an elevation gradient (180 m-1521 m) and sampled all vascular epiphytes and trees in a typical tropical forest on H...

متن کامل

Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests

Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plant...

متن کامل

Comment on "Determination of deforestation rates of the world's humid tropical forests".

A recently completed research program (TREES) employing the global imaging capabilities of Earth-observing satellites provides updated information on the status of the world's humid tropical forest cover. Between 1990 and 1997, 5.8 +/- 1.4 million hectares of humid tropical forest were lost each year, with a further 2.3 +/- 0.7 million hectares of forest visibly degraded. These figures indicate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016